Title Unsupervised class - based language model adaptation for spontaneous speech recognition

نویسندگان

  • Tadasuke Yokoyama
  • Takahiro Shinozaki
  • Koji Iwano
  • Sadaoki Furui
چکیده

This paper proposes an unsupervised, batch-type, class-based language model adaptation method for spontaneous speech recognition. The word classes are automatically determined by maximizing the average mutual information between the classes using a training set. A class-based language model is built based on recognition hypotheses obtained using a general word-based language model, and linearly interpolated with the general language model. All the input utterances are re-recognized using the adapted language model. The proposed method was applied to the recognition of spontaneous presentations and was found to be effective in improving the recognition accuracy for all the presentations. The best condition was found to be using 100 word classes, and in this condition 2.3% of the absolute value improvement in the word accuracy averaged over all the speakers was achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Language Model Adaptation Using Word Classes for Spontaneous Speech Recognition

This paper proposes an unsupervised, batch-type, class-based language model adaptation method for spontaneous speech recognition. The word classes are automatically determined by maximizing the average mutual information between the classes using a training set. A class-based language model is built based on recognition hypotheses obtained using a general word-based language model, and linearly...

متن کامل

Improvement of Lecture Speech Recognition by Using Unsupervised Adaptation

The aim of this work is to improve the recognition performance of spontaneous speech. In order to achieve the purpose, the authors of this chapter propose new approaches of unsupervised adaptation for spontaneous speech and evaluate the methods by using diagonal-covariance and full-covariance hidden Markov models. In the adaptation procedure, both methods of language model (LM) adaptation and a...

متن کامل

Unsupervised class-based language model adaptation for spontaneous speech recognition

This paper proposes an unsupervised, batch-type, class-based language model adaptation method for spontaneous speech recognition. The word classes are automatically determined by maximizing the average mutual information between the classes using a training set. A class-based language model is built based on recognition hypotheses obtained using a general word-based language model, and linearly...

متن کامل

Unsupervised language model adaptation methods for spontaneous speech

In this paper we examine the performance of three different unsupervised language model adaptation schemes applied to speech recognition of spontaneous speech lecture presentations. Two of the schemes have been described previously in the literature while the third is a variation of one of the other two schemes. All three schemes are based on a combination of word -gram and class -gram models a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017